What is the Importance of hashCode() and equals() methods? How they are used in Java

The java.lang.Object has two methods defined in it. They are – public boolean equals(Object obj) public int hashCode(). These two methods are used heavily when objects are stored in collections. There is a contract between these two methods which should be kept in mind while overriding any of these methods. The Java API documentation describes it in detail.

The hashCode() method returns a hash code value for the object. This method is supported for the benefit of hashtables such as those provided by java.util.Hashtable or java.util.HashMap. The general contract of hashCode is: Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not remain consistent from one execution of an application to another execution of the same application. If two objects are equal according to the equals(Object) method, then calling the hashCode method on each of the two objects must produce the same integer result. It is not required that if two objects are unequal according to the equals(java.lang.Object) method, then calling the hashCode method on each of the two objects must produce distinct integer results.

However, the programmer should be aware that producing distinct integer results for unequal objects may improve the performance of hashtables. As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects.

The equals(Object obj) method indicates whether some other object is “equal to” this one. The equals method implements an equivalence relation on non-null object references: It is reflexive: for any non-null reference value x, x.equals(x) should return true. It is symmetric: for any non-null reference values x and y, x.equals(y) should return true if and only if y.equals(x) returns true. It is transitive: for any non-null reference values x, y, and z, if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true. It is consistent: for any non-null reference values x and y, multiple invocations of x.equals(y) consistently return true or consistently return false, provided no information used in equals comparisons on the objects is modified. For any non-null reference value x, x.equals(null) should return false.

The equals method for class Object implements the most discriminating possible equivalence relation on objects; that is, for any non-null reference values x and y, this method returns true if and only if x and y refer to the same object (x == y has the value true). Note that it is generally necessary to override the hashCode method whenever this method is overridden, so as to maintain the general contract for the hashCode method, which states that equal objects must have equal hash codes.

A practical Example of hashcode() & equals(): This can be applied to classes that need to be stored in Set collections. Sets use equals() to enforce non-duplicates, and HashSet uses hashCode() as a first-cut test for equality. Technically hashCode() isn’t necessary then since equals() will always be used in the end, but providing a meaningful hashCode() will improve performance for very large sets or objects that take a long time to compare using equals().